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Introduction. Recently I had occasion1 to write

det(I − xA) = exp
{
tr log(I − xA)

}

= exp
{
− T1x − 1

2T2x
2 − 1

3T3x
3 − 1

4T4x
4 − · · ·

}
(1)

where Tk ≡ tr(Ak); i.e., to display det(I− xA) as a composite function. I look
here to general features of the class of formulae of which (1) provides a valuable
instance. Setting aside all convergence considerations, let f(x) and g(x) be
formal power series; we look to the formal expansion of F (x) = f(g(x)).

Bare bones of the problem. The terms in power series typically wear 1
n or 1

n! or
other such decorations. Stripping those away, let

g(x) = a1x
1 + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · · (2.1)

f(x) = 1
1 − x

= 1 + x2 + x3 + x4 + x5 + · · · (2.2)

Then Mathematica supplies

F (x) = 1 + a1x
2

+ (a2
1 + a2)x2

+ (a3
1 + 2a1a2 + a3)x3

+ (a4
1 + 3a2

1a2 + a2
2 + 2a1a2 + a4)x4

+ (a5
1 + 4a3

1a2 + 3a1a
2
2 + 3a2

1a3 + 2a2a3 + 2a1a4 + a5)x5

... (3.1)
≡ D0 + D1x

1 + D2x
2 + D3x

3 + D4x
34 + D5x

5 + · · · (3.2)

1 “Newton and the characteristic polynomial of a matrix” (December 2019),
page 4.
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The terms that appear in the development of (say) D5 can be described

aj1
1 aj2

2 aj3
3 aj4

4 aj5
5 subject to the constraint j1 + 2j2 + 3j3 + 4j4 + 5j5 = 5

while those that contribute to Dn are of the form

n∏

i=1

a ji
i : j1 + 2j2 + 3j3 + · · · + njn = n

But those expressions provide no indication of the numerical prefactors that
appear in the description of D5 (and generally of Dn). This problem is resolved
when one recognizes that the terms in D5 arise from the partitions of 5. In
the following table I have used Reverse[IntegerPartitions[5]] to list the
partitions of 5, and Length[Permutations[•]] to count the number of distinct
permutations of each partition:

{1, 1, 1, 1, 1} 1
{2, 1, 1, 1} 4
{2, 2, 1} 3
{3, 1, 1} 3
{3, 2} 2
{4, 1} 2
{5} 1

That data serves to constrct

D5 = (a5
1 + 4a3

1a2 + 3a1a
2
2 + 3a2

1a3 + 2a2a3 + 2a1a4 + a5)

Because p(n) (use PartitionsP[n]) is such a rapidly growing function of n the
desciption of Dn becomes rapidly unmanageable; we find

D10 = sum of 42 terms
D100 = sum of 190569292 terms

I now pull from my hat (mystery to be removed in a moment) the Toeplitz
matrix

T5 =





a1 a2 a3 a4 a5

−1 a1 a2 a3 a4

0 −1 a1 a2 a3

0 0 −1 a1 a2

0 0 0 −1 a1




(4.5)

(the construction of Tn is obvious) and observe (with Mathematica’s assistance)
that

det T5 = D5
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Laplace expansion on the final column (bottom to top) gives

D5 = a1D4 + a2D3 + a3D2 + a4D1 + a5D0

were it is understood that D0 = 1, D1 = a1. Generally, we have the recursion
relation

Dn =
n∑

k=1

akDn−k (5)

which can be seen to follow from the assembly of the composite function
F (x) = f(g(x)), and might be used to motivate the construction of the Toeplitz
matrices Tn.

Putting meat on the bare bones. The preceding discussion owes its bare bones
simplicity to the circumstance that no non-trivial numerical coefficients entered
at (2.2) into the construction of f(x); all of the numerics that appear in
(3.1) derive from the procedure (counting distinct permutations of individual
partitions) described on the preceding page. Look now to the most general
case, in which arbitrary numerics {k1, k2, . . .} enter into the construction of the
monic series

f(x) = 1 + k1x
2 + k2x

2 + · · · + kix
i + · · · (6)

Mathematica now supplies

F (x) = 1 + a1k1x
2

+ (a2
1k2 + a2k1)x2

+ (a3
1k3 + 2a1a2k2 + a3k1)x3

+ (a4
1k4 + 3a2

1a2k3 + a2
2k2 + 2a1a2k2 + a4k1)x4

+ (a5
1k5 + 4a3

1a2k4 + 3a1a
2
2k3 + 3a2

1a3k3 + 2a2a3k2 + 2a1a4k2 + a5k1)x5

... (7.1)
≡ D0 + D1(k1)x1 + D2(k1, k2)x2 + D3(k1, k2, k3)x3

+ D4(k1, k2, k3, k4)x4 + D5(k1, k2, k3, k4, k5)x5 + · · · (7.2)

which give back (3) when k1 = k2 = · · · = 1.

It is apparently not possible in the general case to construct determinental
descriptions of the D-coefficients, except by the following formal device: from
Toeplitz matrices of the form

T5(k) =





ka1 ka2 ka3 ka4 ka5

−1 ka1 ka2 ka3 ka4

0 −1 ka1 ka2 ka3

0 0 −1 ka1 ka2

0 0 0 −1 ka1




(8.5)

we obtain

det T5(k) = (a5
1k

5 + 4a3
1a2k

4 + 3a1a
2
2k

3 + 3a2
1a3k

3 + 2a2a3k
2 + 2a1a4k

2 + a5k
1)
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which gives back D5(k1, k2, k3, k4, k5) when each of the exponentiated k-factors
is rewritten as a subscripted k-factor: kp → kp. Generally

D5(k1, k2, . . . , kn) = det Tn(k)
∣∣∣
kp → kp : p = 1, 2, . . . , n

(9.5)

Computation establishes that

det T5(k) = a1k det T4(k) + a2k det T3(k)
+ a3k det T2(k) + a4k det T1(k) + a5k

so in general we have the recursion relation (compare (5))

det Tn(k) =
n∑

m=1

amk det Tn−m(k) (10)

But because (except in special cases)

kukv
∣∣∣
kp → kp

$= kukv

this does not translate into a recursion relation among the D-coefficients.

In some special cases results sharper than those described above can be
obtained. When we set kn = 1 (all n) we recover the simplest/sharpest of all
cases: the bare bones case We turn now to the important case kn = 1

n! .

Exponentially composite functions. Set

f(x) = ex = 1 + x + 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + 1
5!x

5 + · · ·

and maintain the generic form of g(x). Then

F (x) = 1 + 1
1!a1x

1

+ 1
2!

(
a2
1 + a2

)
x2

+ 1
3!

(
a3
1 + 6a1a2 + 6a3

)
x2

+ 1
4!

(
a4
1 + 12a2

1a2 + 12a2
2 + 24a1a3 + 24a4

)
x2

+ 1
5!

(
a5
1 + 20a3

1a2 + 60a1a
2
2 + 60a2

1a3 + 120a2a3 + 120a1a4 + 120a5

)

...
≡ 1 + E1x

1 + E2x
2 + E3x

3 + E4x
4 + E5x

5 + · · · (11)

where we verify that (for example) E5 = 1
5!D5

(
1
1! ,

1
2! ,

1
3! ,

1
4! ,

1
5!

)
.

A little experimentation motivates the introduction of matrices the
non-Toplitz form (note the sub-diagonal) exemplified by

E5 =





a1 2a2 3a3 4a4 5a5

−1 a1 2a2 3a3 4a4

0 −2 a1 2a2 3a3

0 0 −3 a1 2a2

0 0 0 −4 a1




(12)
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because they permit us to write

En = 1
n! det En (13)

Laplace expansion up the last column gives

E5 = 4!
{

1
4!a1E4 + 2

3!a2E3 + 3
2!a3E2 + 4

1!a4E1 + 5
0!a5E0

}

where 0! = E0 = 1; in the general case

En = (n − 1)!
n∑

m=1

m
(n − m)!

amEn−m (14)

Bell polynomials. Set an = 1
n!bn, which is to say, let g(x) be defined

g(x) = b1x
1 + 1

2!b2x
2 + 1

3!b3x
3 + 1

4!b4x
4 + 1

5!b5x
5 + · · · (15)

Retaining the assumption that f(x) = ex we find that computation then gives

F (x) = 1 + 1
1!b1x

1

+ 1
2!

(
b2
1 + b2

)
x2

+ 1
3!

(
b3
1 + 3b1b2 + b3

)
x2

+ 1
4!

(
b4
1 + 6b2

1b2 + 3b2
2 + 4b1b3 + b4

)
x2

+ 1
5!

(
b5
1 + 10b3

1b2 + 15b1b
2
2 + 10b2

1b3 + 10b2b3 + 5b1b4 + b5

)

...
≡ 1 + 1

1!B1(b1)x1 + 1
2!B2(b1, b2)x2 + 1

3!B3(b1, b2, b3)x3+
1
4!B4(b1, b2, b3, b4)x4 + 1

5!B5(b1, b2, b3, b4, b5)x5 + · · · (16)

where the Bn(•) are the “complete exponential Bell polynomials.” Working
from E5 we are led to construct

B5(b1, b2, b3, b4, b5) =





b1 b2
1
2!b3

1
3!b4

1
4!b5

−1 b1 b2
1
2!b3

1
3!b4

0 −2 b1 b2
1
2!b3

0 0 −3 b1 b2

0 0 0 −4 b1





(17)

which gives
B5(b1, b2, b3, b4, b5) = det B5(b1, b2, b3, b4, b5)

and (again by Laplace expansion up the last column) find

B5 = b1B4 + 4b2B3 + 6b3B2 + 4b4B1 + b5B0

=
4∑

m=0

(
4
m

)
bm+1B4−m
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Generally,
Bn = det Bn : arguments surpressed (18)

where the nearly-Toplitzian structure of Bn is made obvious by that of B5, and
where the general recursion relation reads

Bn+1(b1, b2, . . . , bn+1) =
n∑

m=0

(
n

m

)
bm+1Bn−m(b1, b2, . . . , bn−m) (19)

A determinantal representation sometimes found in the literature2

B5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1

(5−1
1

)
b2

(5−1
2

)
b3

(5−1
3

)
b4

(5−1
4

)
b5

−1 b1

(5−2
1

)
b2

(5−2
2

)
b3

(5−2
3

)
b4

0 −1 b1

(5−3
1

)
b2

(5−3
2

)
b3

0 0 −1 b1

(5−4
1

)
b2

0 0 0 −1 b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

also works, but is above the diagonal profoundly non-Toplitzian, and does not
share with (17) the property that advancing n → n + 1 is accomplished simply
by introducing an additional right column and bottom row of obvious design.

The complete Bell polynomials, of which the first few—generated by

exp
{ ∞∑

k=1

1
k!akxk

}
=

∞∑

n=0

1
n!Bn(a1, a2, . . . , an)xn (20)

—are, to recapitulate,

B0 = 1
B1(a1) = a1

B2(a1, a2) = a2
1 + a2

B3(a1, a2, a3) = a3
1 + 3a1a2 + a3 (21)

B4(a1, a2, a3, a4) = a4
1 + 6a2

1a2 + 4a1a3 + 3a2
2 + a4

B5(a1, a2, a3, a4, a5) = a5
1 + 10a3

1a2 + 15a1a
2
2 + 10a2

1a3 + 10a2a3 + 5a1a4 + a5

which are, of course, actually multinomials. Comparison with this result

D5 = a5
1 + 4a3

1a2 + 3a1a
2
2 + 3a2

1a3 + 2a2a3 + 2a1a4 + a5

2 See, for example, the Wikipedia article “Bell polynomials.” One can
use familiar procedures (for example: arbitrary similarity transformations)
to produce infinitely many determinant-preserving modifications of any given
matrix. And, indeed, to preserve all of the coefficients in the characteristic
polynomial.
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of the bare bones theory shows that the a-factors arise here as there from the
partitions of 5, but that the numeric factors have been altered by the factorials
in the generating function. Evidently

Bn(a1, a2, . . . , an) is a sum of p(n) terms

Set partitions. What have come to be called “Bell polynomials” were, by Eric
Temple Bell (1883–1960) himself, when he introduced them in the late 1920s,
called “partition polynomials.” We have already seen how integer partitions
enter the picture. Bell was interested, however, in the ennumerative properties
of set partitions.

The set containing a solitary element can be partitioned in 1 way: (1). A
2-element set can be partitioned in 2 ways: (1)(2), (1, 2). A 3-element set can
be partitioned in 5 ways:

(1)(2)(3)
(1, 2)(3), (1, 3)(2), (2, 3)(1)
(1, 2, 3)

A 4-element set can be partitioned in 15 ways:

(1)(2)(3)(4)
(1, 2)(3)(4), (1, 3)(2)(4), (1, 4)(2)(3), (2, 3)(1)(4), (2, 4)(1)(3), (3, 4)(1)(2)
(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)
(1, 2, 3)(4), (1, 2, 4)(3), (1, 3, 4)(2), (2, 3, 4)(1)
(1, 2, 3, 4)

A 5-element set can be partitioned in 52 ways.3 Bell numbers Bn arise from
Bell polynomials be setting all a-variables to unity:

Bn = Bn(1, 1, . . . , 1)

Reading from (21) we find {B0, B1, B2, B4, B5, . . .} = {1, 1, 2, 5, 15, 52, . . .},
which reproduces precise the sequence obtained above. We thank Bell for proof
that the agreement continues: Bell numbers count set partitions.

Bell devised a Pascal-like algorithm for generating Bell numbers. Starting

from 1
1 , add the stacked couplet and record the result, producing

1
1 2

3 See the figure in the Wikipedia article “Partition of a set.” Authors seem
unable to resist associating that 52 with the 54 chapters of the early 11th century
Japanese classic, The Tale of Genji .
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Use the last digit to begin a new row, keep adding couplets and recording the
results, to produce

1
1 2
2 3 5

Again use the last digit to launch a new row and proceed as before:

1
1 2
2 3 5
5 7 10 15

Five iterations of that procedure produce

1
1 2
2 3 5
5 7 10 15
15 20 27 37 52
52 67 87 114 151 203

The Bell numbers appear on the edges of the triangle.

Less mysteriously, we learn from (20)—set all a-variables to unity—that
the Bell numbers are generated by

exp
{ ∞∑

k=1

1
k!x

k
}

=
∞∑

n=0

1
n!Bnxn (22)

and from (19) that they satisfy the recursion relation

Bn+1 =
n∑

m=0

(
n

m

)
Bn−m (23)

Bell numbers arise also in other connections. Look, for example, to the
Poisson distribution

P (k; λ) = λke−λ

k!
For the successive moments

mn(λ) =
∞∑

k=0

knP (k; λ)

Mathematica supplies

m0(λ) 1 1
m1(λ) λ 1
m2(λ) λ + λ2 2
m3(λ) λ + 3λ2 + λ3 5
m4(λ) λ + 7λ2 + 6λ3 + λ4 15
m5(λ) λ + 15λ2 + 25λ3 + 10λ4 + λ5 52

where in the final column we have set λ = 1 and recovered the Bell numbers.
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Concerning the Bell polynomials themselves, their maternal service (giving
birth to Bell numbers) by no means exhausts their utility. A source cited above2

mentions their relevance to, among other subjects,
• The formulation of Faà di Bruno’s Formula (nth-order differentiation
composite functions), the context in which—60 years ago—I first acquired some
familiarity with this subject.4

• The Lagrange inversion of series.
• The asymptotic expansion of Laplace-type integrals

I(λ) =
∫ b

a
e−λf(x)g(x)dx

which are central to the many physical/mathematical applications of the
saddlepoint method and the method of steepest descent.
• Hermite polynomials: In (20) set x = t, a1 = x, a2 = −1, ak>2 = 0, get

exp
{
xt − 1

2 t2
}

=
∞∑

n=0

1
n!Bn(x,−1, 0 . . . , 0)tn

But

exp
{
xt − 1

2 t2
}

=
∞∑

n=0

1
n!Hen(x)tn

so by (17)

He5(x) = det





x −1 0 0 0
−1 x −1 0 0
0 −2 x −1 0
0 0 −3 x −1
0 0 0 −4 x




= x5 − 10x3 + 15x, etc.

which (for what it’s worth) appeared in my own work long ago.5

• Derivation of Newton’s symmetric polynomial identities: The discussion in
the Wikipedia article2 is sketchy and opaque, but the argument follows clearly
from results developed in the essay1 that inspired the present effort. Taking A
to be an n×n matrix, it is shown there that

det(λI − A) = λn +
n∑

m=1

Dmλn−m

4 “Foundations and applications of the Schwinger action principle,”doctoral
dissertation, Brandeis University, 1960.

5 “Some applications of an elegant formula due to V. F. Ivanoff,” Notes for
a seminar presented on 28 May 1969 to the Applied Math Club at Porttland
State University, page 10. Note that the determinant is unchanged if all the
minus signs are omitted.
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where

Dm = (−)m 1
m!

∣∣∣∣∣∣∣∣∣∣∣∣

T1 T2 T3 T4 . . . Tm

1 T1 T2 T3 . . . Tm−1

0 2 T1 T2 . . . Tm−2

0 0 3 T1 . . . Tm−3
...

...
...

...
. . .

...
0 0 0 0 . . . T1

∣∣∣∣∣∣∣∣∣∣∣∣

: m = 1, 2, . . . , n

= 0 : m > n

and Tk ≡ trAk. That result—which lies at the heart of my derivation1 of
Newton’s identities—can by (17) be formulated

det(λI − A) = λn +
n∑

m=1

λn−m 1
m!Bm(t1, t2, . . . , tm) (24)

where
tk ≡ −(k − 1)! Tk

Setting λ = 0 we obtain

det A = (−)n 1
n!Bn(t1, t2, . . . , tn) (25)

which is a trace-wise description of det A.
• Moments and cumulants of probability distributions: The generating function
for the moments mn of a given distribution—whether the random variable be
continuous or discrete—is given6 by

M(t) = 1 +
∞∑

n=1

1
n!mntn =

〈
ext

〉
(26.1)

where 〈•〉 signifies “expectation value.” The moments {1, m1, m2, . . .} serve
collectively to characterize the distribution. Alternatively/equivalently one has
the“cumulants”{0, c1, c2, . . .}which were introduced by the Danish astronomer/
statistician Thorvald Thiele (1838–1910) in 1889, are useful in some contexts,
and are generated by

K(t) =
∞∑

n=1

1
n!cntn = log[M(t)] (26.2)

6 When they exist. Recall that for the Cauchy-Lorenz distribution

P (x) = (α/π) 1
α2 − (x − β)2

: −∞ < x < ∞

m1 and all higher moments are undefined.
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Inversely
M(t) = eK(t)

so by (20) and (17) we have

mn = Bn(c1, c2, . . . , cn)

=





c1 c2
1
2!c3

1
3!c4

1
4!c5 . . . 1

n−1!cn

−1 c1 c2
1
2!c3

1
3!c4 . . . 1

n−2!cn−1

0 −2 c1 c2
1
2!c3 . . . 1

n−3!cn−2

0 0 −3 c1 c2 . . . 1
n−4!cn−3

0 0 0 −4 c1 . . . 1
n−5!cn−4

...
...

...
...

...
. . .

...
0 0 0 0 0 . . . c1





Explicitly—borrowing here from (21)—we have

m0 = 1
m1 = c1

m2 = c2
1 + c2

m3 = c3
1 + 3c1c2 + c3 (27.1)

m4 = c4
1 + 6c2

1c2 + 4c1c3 + 3c2
2 + c4

m5 = c5
1 + 10c3

1c2 + 15c1c
2
2 + 10c2

1c3 + 10c2c3 + 5c1c4 + c5

which on inversion7 (accomplished in an instant by Mathematica’s Solve
command) become

c1 = m1

c2 = m2 − m2
1 =

〈
(x − m1)2

〉

c3 = m3 − 3m1m2 + 2m2
1 (27.2)

c4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1

c5 = m5 − 5m1m4 − 10m2m3 + 20m2
1m3 + 30m1m

2
2 − 60m3

1m2 + 24m5
1

Equations (27) assume a somewhat simpler appearance when expressed in terms
of the central moments µn =

〈
(x−m1)n

〉
.8 Equations (27.2) do not appear to

admit of determinental formulation, but can be displayed as weighted sums

cn =
n∑

k=1

(−)k−1(k − 1)! Bn,k(m1, m2, . . . , mn−k−1) (28)

7 Alternatively, use K(t) = log[1 + Σ(t)] = Σ − 1
2Σ2 + 1

3Σ3 − 1
4Σ4 + · · ·

8 See statistical physics & thermodynamics (1969–1970, 1971–1972),
Chapter 1, pages 39–40 or the Wikipedia article “Cumulant.”
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of “incomplete Bell polynomials,” an intricate subject2 that I had hoped to
avoid, though it is central to Bell’s theory and many of its diverse applications.

Briefly, the polynomials Bn,k(a1, a2, . . . , an−k+1) : k = 0, 1, 2, . . . , n are
generated by

∞∑

n=k

1
n!Bn,k(a1, a2, . . . , an−k+1)xn = 1

k!

( ∞∑

j=1

1
j!ajx

j
)k

(29)

which (as does the command BellY[n, k, {a1, a2, . . . , an−k+1}]) gives rise to
the following list:

B0,0(a1) = 1
B1,0(a1, a2) = 0

B1,1(a1) = a1

B2,0(a1, a2, a3) = 0
B2,1(a1, a2) = a2

B2,2(a1) = a2
1

B3,0(a1, a2, a3, a4) = 0
B3,1(a1, a2, a3) = a3

B3,2(a1, a2) = 3a1a2

B3,3(a1) = a3
1

B4,0(a1, a2, a3, a4, a5) = 0
B4,1(a1, a2, a3, a4) = a4

B4,2(a1, a2, a3) = 3a2
2 + 4a1a3

B4,3(a1, a2) = 6a2
1a2

B4,4(a1) = a4
1

B5,0(a1, a2, a3, a4, a5, a6) = 0
B5,1(a1, a2, a3, a4, a5) = a5

B5,2(a1, a2, a3, a4) = 10a2a3 + 5a1a4

B5,3(a1, a2, a3) = 15a1a
2
2 + 10a2

1a3

B5,4(a1, a2 = 10a3
1a2

B5,5(a1) = a5
1

B6,0(a1, a2, a3, a4, a5, a6, a7) = 0
B6,1(a1, a2, a3, a4, a5, a6) = a6

B6,2(a1, a2, a3, a4, a5) = 10a2
3 + 15a2a4 + 6a1a5

B6,3(a1, a2, a3, a4) = 15a3
2 + 60a1a2a3 + 15a2

1a4

B6,4(a1, a2, a3) = 45a2
1a

2
2 + 20a3

1a3

B6,5(a1, a2) = 15a4a2

B6,6(a1) = a6
1
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Bell’s interest in “partition polynomials” sprang from the circumstance
that they are replete with allusions to the ennumerative properties of the
partitions of integers and sets. For example, let

Nn,k = number of k-part partitions of n:
∑n

k=1Nn.k = p(n)

In the case n = 5 we have

(5) N5,1 = 1
(1, 4), (2, 3) N5,2 = 2

(1, 1, 3), (1, 2, 2) N5,3 = 2
(1, 1, 1, 2) N5,4 = 1

(1, 1, 1, 1, 1, ) N5,5 = 1

p(5) = 7

and in the case n = 6 have

(6) N6,1 = 1
(1, 5), (2, 4), (3, 3) N6,2 = 3

(1, 1, 4), (1, 2, 3), (2, 2, 2) N6,3 = 3
(1, 1, 1, 3), (1, 1, 2, 2) N6,4 = 2

(1, 1, 1, 1, 2) N6,5 = 1
(1, 1, 1, 1, 1, 1) N6,6 = 1

p(6) = 11

Looking to the Bn,k-table, we see that

Bn,k = weighted sum of Nn,k monomials

Look in particular to the incomplete Bell polynomial

B6,2(a1, a2, a3, a4, a5) = 10a2
3 + 15a2a4 + 6a1a5

The subscript tells Bell “Think of a set of 6 elements partitioned into 2 blocks.”
The 6a1a5 term says there are 6 such partitions with blocks of sizes 1 and 5;
the 15a2a4 says there are 15 such partitions of sizes 2 and 4; the 10a2

3 term says
there are 10 such partitions with 3 blocks of size 2.9

The Bn,k-table supplies

5∑

k=1

B5,k = a5 + (10a2a3 + 5a1a4) + (15a1a
2
2 + 10a2

2a3) + 10a3
1a2 + a5

1

= B5(a1, a2, a3, a4, a5)

which illustrates the general proposition that

Bn(a1, a2, . . . , an) =
n∑

k=1

Bn,k(a1, a2, . . . , an−k+1) (30)

=
∑

terms sorted by degreee k of homogeneity

9 The command SetPartitions on my computer in inoperative; I have here
quoted directly from the Wikipedia article.2
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Thus do incomplete Bell polynomials sum to completion. We observe finally
that

5∑

k=1

(−)k−1(k − 1)! B5,k(m1, m2, . . . , mn−k+1) = m5 − 1!(10m2m3 + 5m1m4)
+ 2!(15m1m

2
2 + 10m2

2m3)

− 3!(10m3
1m2)

+ 4!(m5
1)

= c5 of (27.2)

It was to achieve this illustration of (28) that I undertook this Bn,k digression,
of which now I can’t let go.

Taylor expansion of arbitrary composite functions. We look to the expansion
(about the origin) of F (x) = f(g(x)), subject to the simplifying assumption
that g(0) = 0:

f(x) =
∞∑

n=0

1
n!bnxn, g(x) =

∞∑

m=1

1
m!amxm

We might on the one hand proceed from

F (x) =
∞∑

n=0

1
n!

[(
d
dx

)n
f(g(x))

]

0
xn ≡

∞∑

n=0

1
n!Fnxn

by means of (V. F. Ivanoff’s formulation of) Faà di Bruno’s formula

(
d
dx

)n
f(g(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g ′D g′′D g′′′D g′′′′D . . . g(n)D
−1 g ′D 2g′′D 3g′′′D . . .

(n−1
1

)
g(n−1)D

0 −1 g ′D 3g′′D . . .
(n−1

2

)
g(n−2)D

0 0 −1 g ′D . . .
(n−1

3

)
g(n−3)D

...
...

...
...

. . .
...

0 0 0 0 . . . g ′D

∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x)
∣∣∣
x=0

where Dkf(x) ≡ f (k)(x). This gives

[(
d
dx

)n
f(g(x))

]

0
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1D a2D a3D a4D . . . anD
−1 a1D 2a2D 3a3D . . .

(n−1
1

)
a(n−1)D

0 −1 a1D 3a2D . . .
(n−1

2

)
a(n−2)D

0 0 −1 a1D . . .
(n−1

3

)
a(n−3)D

...
...

...
...

. . .
...

0 0 0 0 . . . a1D

∣∣∣∣∣∣∣∣∣∣∣∣∣

f(x)
∣∣∣
x=0

Thus

F4 =
{

a4D + (3a2
2 + 4a1a3)D2 + 6a2

1a2D
3 + a4

1D
4
}

f(x)
∣∣∣
x=0

= a4b1 + (3a2
2 + 4a1a3)b2 + 6a2

1a2b3 + a4
1b4
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Similarly
F3 = a3b1 + 3a2

1a2b2 + a3
1b3

F2 = a2b1 + a2
1b2

F1 = a1b1

F0 = b0

so in 4th order

f(g(x)) = b0 + a1b1x + 1
2! [a2b1 + a2

1b2]x2 + 1
3! [a3b1 + 3a2

1a2b2 + a3
1b3]x3

+ 1
4! [a4b1 + (3a2

2 + 4a1a3)b2 + 6a2
1a2b3 + a4

1b4]x4 + · · · (31)

This is precisely the result produced by the command Series[f(g(x)), {x, 0, 4}].

But we might, on the other hand, proceed from

F (x) =
∞∑

k=0

1
k!bk[g(x)]k

1
k! [g(x)]k =

∞∑

n=k

1
n!

[
1
k!

(
d
dx

)n[g(x)]k
]

0
xn

=
∞∑

n=k

1
n!Bn,k(a1, a2, . . . , an−k+1)xn

=
∞∑

n=0

1
n!

{ n∑

k=0

bkBn,k(a1, a2, . . . , an−k+1)
}

xn (32)

=
∞∑

n=0

1
n!Fnxn

Taking Bn,k values from page 12, we again recover (31).

The incomplete Bell polynomials are doubly-indexed objects, so invite
interpretaton/display as elements of an infinite-dimensional square Bell matrix

B[g] =





1 0 0 0 . . . 0 . . .
0 B1,1 0 0 . . . 0 . . .
0 B2,1 B2,2 0 . . . 0 . . .
0 B3,1 B3,2 B3,3 . . . 0 . . .
...

...
...

...
. . .

...
...

0 Bn,1 Bn,2 Bn,3 . . . Bn,n . . .
...

...
...

... . . .
...

. . .





where the 0’s (except for those in the leading column) are artifacts of the
condition g(0) = 0. By (30), the elements on the nth row sum to Bn(a1, . . . , , an).
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Standad notational conventions make it more convenient/natural to in
place of (32) write

F (x) =
∞∑

n=0

{ n∑

k=0

bkCk,n(a1, a2, . . . , an−k+1)
}

xn

Ck,n = Bn,k

and in place of the Bell matrix to introduce the Carleman matrix10

M[g] =





1 0 0 0 . . . 0 . . .
0 C1,1 C1,2 C1,3 . . . C1,n . . .
0 0 C2,2 C2,3 . . . C2,n . . .
0 0 0 C3,3 . . . C3,n . . .
...

...
...

...
. . .

...
0 0 0 0 . . . Cn,n . . .
...

...
...

...
...

. . .





Writing

xxx =





1
x
x2

x3

...





we in this notation have

M [g]xxx = Taylor expansion of ggg(x) ≡





1
[g(x)]1

[g(x)]2

[g(x)]3
...





and so have—again in agreement with (31)—

Expansion of F (x) ≡ f(g(x)) = bbbTggg(x) = bbbTM [g]xxx

where bbbT =
(

1
0!b0,

1
1!b1

1
2!b2,

1
3!b3, . . .

)
. If

e(x) =
∞∑

n=0

1
n!cnxn, f(x) =

∞∑

m=1

1
m!bmxm, g(x) =

∞∑

m=1

1
m!amxm

then that same line of argument gives

e(f(g(x))) = eeeTM[f ]M[g]xxx

10 Torsten Carlman (1892–1949) was a Swedish mathematician who made
important contributions also to fundamental physics (ergodic theory, kinetic
theory of gases).
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Perturbed energy spectra of simple quantum systems. Nearly twenty years ago
I described in a series of three papers10 how formulae of the type

En(λ) = En,0 + λEn,1 + λ2En,2 + · · ·

could be constructed (and carried to high order) without the usual reference11

to perturbed eigenfunctions |n)λ = |n, 0) + λ|n, 1) + λ2|n, 2) + · · ·, which are
tedious to develop, and usually of no physical interest. Earlier experience4

made me aware as I wrote that Bell polynomials lurked in the wings, but did
not pursue that connection. Which is what I propose to do here.

We study systems of the form H = H0+λV , which infinite-dimensional cases
are described by hermitian matrices H = H0 + λV, where in the unperturbed
basis H0 is diagonal. We will assume the unperturbed spectrum to be non-
degenerate.

simple determinental approaches

In the 2-dimensional case we seek the solutions {E1, E2} of the quadratic
chacteristic polynomial

det
[ (

e1 0
0 e2

)
+ λ

(
v11 v12

v21 v22

)
− w

(
1 0
0 1

) ]
= 0 (33)

which are

w = 1
2

{
[e1 + e2 + λ(v11 + v22)]

±
[

[e1 + e2 + λ(v11 + v22)]2

− 4[e1e2 + λ(e1v22 + e2v11) + λ2(v11v22 − v12v21)]

] 1
2

}

Expansion in powers of λ gives

w =






e1 + λv11 + λ2 v12v21

e1 − e2
− λ3 v12v21(v11 − v22)

(e1 − e2)2
+ · · ·

e2 + λv22 − λ2 v12v21

e1 − e2
+ λ3 v12v21(v11 − v22)

(e1 − e2)2
+ · · ·

(34)

This simple argument has led to results that already capture characteristic

10 [1] “Perturbed spectra without (it says here) pain,” (April, 2000);
[2] “Higher-order spectral perturbation by a new determinental method,”
(September, 2000);
[3] “Stark essentials of the determinental approach to time-independent
spectral perturbation theory,” (October, 2000).

11 See, for example, David Griffith & Darrell Schroeter, Introduction to
Quantum Mechanics (3rd edition, 2018), pages 279–285.
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features of the general case, but suffers from the defect that it is inapplicable
to higher-dimensional systems, for it requires one to construct symbolic
descriptions of the roots of polynomials of ascending degree, which is awkward
for cubics and quartics, and impossible for degree (dimension) n ! 5.

To circumvent this difficulty we at (33) write w0 +λw1 +λ2w2 +λ3w3 + · · ·
in place of w and by expansion obtain an equation of the form

W (w0) + λW (w0, w1) + λ2W (w0, w1, w2)

+ λ3W (w0, w1, w2, w3)

+ λ4W (w0, w1, w2, w3, w4) + · · · 0
(35)

with

W (w0) = e1e2 − (e1 + e2)w0 + w2
0 = (w0 − e1)(w0 − e2)

W (w0, w1) = e1v22 + e2v11 − (v11 + v22)w0 − (e1 + e2)w1 + 2w0w1

W (w0, w1, w2) = (v11v22 − v12v21) − (v11 + v22)w1 + w2
1

− (e1 + e2)w2 + 2w0w2

W (w0, w1, w2, w3) = −(v11 + v22)w2 + 2w1w2 − (e1 + e2)w3 + 2w0w3

...

From
W (w0) = 0 =⇒ w0 = e1 else w0 = e2

the argument is seen to have bifurcated. Pick a branch by (say) setting w0 = e1.
Then, proceeding recursively,

W (w0, w1) = 0 =⇒ w1 = v11

W (w0, w1, w2) = 0 =⇒ w2 = v12v21

e1 − e2

W (w0, w1, w2, w3) = 0 =⇒ w3 = −v12v21(v11 − v22)
(e1 − e2)2

—in precise agreement with (34). Simple Mathematica commands permit the
argument very easily to be carried to much higher order. No polynomials of
high degree are encountered, except trivially in 0th order; at each iteration
the unknown enters linearly. And the argument works in any dimension. The
method is susceptible only to the criticism that it leads to results in which the
components of V are not packaged in natural (unitarily invariant) ways.

belly determinental methods

We look first to how Bell polynomials enter into the discussion. We have interest
in the (perturbed) roots of the the polynomial det(w I − H) : H = H0 + λV. In
the n-dimensional case we have

det(w I − H) = wn det(I − xH) : x ≡ w–1
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and—as was remarked already at (1)—

det(I − xH) = exp
{
tr log(I − xH)

}

= exp
{
− T1x − 1

2T2x
2 − 1

3T3x
3 − 1

4T4x
4 − · · ·}

where again, Tk = trHk. But it was seen at (15) that

exp
{
b1x + 1

2!b2x
2 + 1

3!b3x
3 + 1

4!b4x
4 + · · ·} = 1 + 1

1!B1(b1)x1

+ 1
2!B2(b1, b2)x2

+ 1
3!B3(b1, b2, b3)x3

+ 1
4!B4(b1, b2, b3, b4)x4

so setting

b1 = −T1, b2 = −T2, b3 = −2!T3, . . . , bk = −(k − 1)!Tk, . . .

we have
det(I − xH) = 1 + 1

1!B1(−T1)x1

+ 1
2!B2(−T1,−T2)x2

+ 1
3!B3(−T1,−T2,−2T3)x3

+ 1
4!B4(−T1,−T2,−2T3,−3T4)x4

which (by the Cayley-Hamilton theorem) terminates at order=dimension n,
giving

det(w I − H) = wn + 1
1!B1(−T1)wn−1

+ 1
2!B2(−T1,−T2)wn−2

+ 1
3!B3(−T1,−T2,−2T3)wn−3

+ 1
4!B4(−T1,−T2,−2T3,−3T4)wn−4

...

+ 1
n!Bn(−T1,−T2,−2T3, . . . ,−(n − 1)Tn)w0 = 0

(36)

In the 2-dimensional case this—by (16)—gives

det(w I − H) = w2 − T1w + 1
2! (T

2
1 − T2) (37.2)

When we make the replacement w → w0 +λw1 +λ2w2 +λ3w3 + · · · and expand
in powers of λ we recover (34), and so are led recursively back again to the
familiar results.

It is important to note that (37.2) pertains only to 2-state systems. For
3-state systems , bring B3(a1, a2, a3) = a3

1 + 3a1a2 + a3 to (35) and obtain

det(w I − H) = w3 − T1w
2 + 1

2! (T
2
1 − T2)w + 1

3! (−T 3
1 + 3T1T2 − 2T3) (37.3)
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Such expressions are assembled from powers of traces of powers of H = H0+λV.
From fundamental properties if the trace

tr(X + Y) = trX + trY, trXY = trYX

one has

tr(X + Y)2 = tr(XX + XY + YX + YY) = trX2 + 2trXY + trY2

and more generally

tr(X + Y)n =
n∑

k=0

(
n

k

)
tr(Xn−k Yk)

even when X and Y fail to commute. In particular, we have

trHn = tr(H0 + λV)n =
n∑

k=0

(
n

k

)
tr(Hn−k

0 Vk) λk

which could be used to develop the explicit λ -dependence of the expressions
that appear on the right side of (37). But the result after the replacement w →
w0+λw1+λ2w2+λ3w3+· · · is an ugly (unitarily invariant) mess. And ultimately
useless, since our objective is to construct a description of the perturbed roots
of det(w I − H) = 0, and to that end must sooner or later (better sooner than
later) abandon trace-wise formalism in favor of the element-wise formalism
encountered already on page 18, allowing all of the complicated details to remain
hidden in the mind of Mathematica.

In short: the Bell-based equations (36) have led efficiently to construction
of equations of the form (37), but are otherwise of no practical utility.

Integer/set partitions, multinomial coefficients & Bell. All of the ingredients in
that cocktail have played roles in the preceding discussion. I undertake here to
make explicit, by means of examples, their interconnections.

In the expanded product

(a + b + c)4 = (a4 + b4 + c4) + 4(a3b + a3c + ab3 + b3c + ac3 + bc3)
+ 6(a2b2 + a2b2 + b2c2) + 12(a2bc + ab2c + abc2) (38)

we encounter 4th-order terms of four types: {x4, x3y, x2y2, x2yz}. Multinomial
coefficients are defined

Multinomial[n1, n2, · · · , nk] = (n1 + n2 + · · · + nk)!
n1!n2! · · ·nk!

= #Permutations[a, a, . . . , a︸ ︷︷ ︸
n1

, b, b, . . . , b︸ ︷︷ ︸
n2

, · · · , s, s, . . . , s︸ ︷︷ ︸
nk

]

where #Permutations refers to the number of distinct permutations of tne
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symbols in question. The coefficients in (38) are multinomial coefficients.
Specifically,

terms of type x4 have coefficient
Multinomial[1] = #Permutations[x, x, x, x] = 1

terms of type x3y have coefficient
Multinomial[3, 1] = #Permutations[x, x, x, y] = 4

terms of type x2y2 have coefficient
Multinomial[2, 2] = #Permutations[x, x, y, y] = 6

terms of type x2yz have coefficient
Multinomial[2, 1, 1] = #Permutations[x, x, y, z] = 12

So much for the coefficients that appear in (a1 + a2 + · · · + am)N . How
many terms appear in the expansion of such a product? Classify the terms

an1
1 an2

2 · · · anm
m : n1 + n2 + · · · + nm = N

by the number of 0’s that appear among the exponents, a number which ranges
on {0, 1, 2, . . . , m−1}. The exponents {n1, n2, . . . , nm} refer to a partition of N .
A list of the partitions of N into p parts (p = 1, 2, . . . , m) is produced by the
command IntegerPartitions[m, {p}]. Pad each such partition with enough
0’s to produce m-element sets, and count the number of distinct permutations
of each such set. I illustrate the procedure as it pertains to our example (38),
where m = 3, N = 4:

# terms of type x4:
IntegerPartitions[4, {1}] → {4}
#Permutations[{4, 0, 0}] = 3

# terms of types x3y and x2y2:
IntegerPartitions[4, {2}] → {3, 1}, {2, 2}
#Permutations[{3, 1, 0}] = 6
#Permutations[{2, 2, 0}] = 3

# terms of type x2yz:
IntegerPartitions[4, {3}] → {2, 1, 1}
#Permutations[{2, 1, 1}] = 3

We note that 3 + 6 + 3 + 3 = 15 is indeed the number of terms in (38).

Return now12 to the ennumerative properties of Bell polynomials, looking
specifically to the case

B6,2(a1, a2, a3, a4, a5) = 6a1a5 + 15a2a4 + 10a2
3 (39)

12 See again page 13.
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that is produced by the command BellY[6, 2, {a1, a2, a3, a4, a5}]. From (39)
we see that B6.2 is a multinomial of degree 6 in 5 variables. We are informed
by Mathematica that Multinomial[n1, n2, . . . , nm] gives “the number of ways
of partitioning N = n1 +n2 + · · ·+nm into blocks of sizes {n1, n2, . . . , nm},” in
short: that multinomial coefficients ennumerate set partitions. Looking in this
light to the B6,2 of (39), we find that

Multinomial[1,5] = 6
Multinomial[2,4] = 15

as anticipated, but
Multinomial[3,3] = 20

which is twice the anticipated 10. To see how that comes about (what went
wrong) we list the set partitions in question:

SetPartitions[1,5] =
{

(a)(bbbbb) # = 1 × 1
(b)〈abbbb〉 # = 1 × 5 Total = 6

where 〈•〉 ≡ “all permutations of •”. Similarly

SetPartitions[2,4] =






(aa)(bbbb) # = 1 × 1
〈ab〉〈abbb〉 # = 2 × 4
(bb)〈aabb〉 # = 1 × 6

Total = 15

and

SetPartitions[3,3] =






(aaa)(bbb) # = 1 × 1
〈aab〉〈abb〉 # = 3 × 3
〈abb〉〈aab〉 # = 3 × 3
(bbb)(aaa) # = 1 × 1

Total = 20

But here the last pair of set partitions is redundant with (a mere reordering of)
the first pair, so the 20 reduces to 10 when we speak of distinct set partitions.

Bn,k inherits its terms from IntegerPartitions[n, {k}], the respective
partitions of n into k parts, where k = 1, 2, . . . , n. So

Bn,k is a sum of #IntegerPartitions[n, {k}] many terms

It is instructive from several points of view to look to the case

B8,5(a1, a2, a3, a4) = 70a4
1a4 + 560a3

1a2a3 + 420a2
1a

3
2 (40)

which springs from

IntegerPartitions[8, {5}] =






{1, 1, 1, 1, 4}
{1, 1, 1, 2, 3}
{1, 1, 2, 2, 2}
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There are 3 such partitions, so B8,5 is a sum of 3 terms. We have

Multinomial[1,1,1,1,4] = 1680

and observe that
1680

(number of 1-repeats)!
= 1680

4!
= 70

Similarly
Multinomial[1,1,1,2,3] = 3360

3360
(number of 1-repeats)!

= 3360
3!

= 560

and
Multinomial[1,1,2,2,2] = 5040

5040
(number of 1-repeats)!(number of 2-repeats)!

= 3360
2!3!

= 420

Thus have we recovered the coefficients that appear in (40) and—more generally
—demonstrated how number of distinct set partitions can be extracted from
multinomial coefficients. We have, moreover, shown how incomplete Bell
polynomials Bn,k(aaa) can be constructed ab initio, without recourse to the BellY
command. This construction shows why Bn,k(aaa) is homogenious of degree k and
on which of the variables aaa = {a1, a2, . . . , an} each of its terms depends. From

IntegerPartitions[n] =
n⋃

k=1

IntegerPartitions[n, {k}]

we recover (30), and see why Bn(aaa) is a sum of p(n) terms.

SomeBell-inspiredquantumdynamical remarks.Byway of orientation: Quantum
kinematics springs (in the Schrödinger picture) from the assumption that the
motion of states |ψ) is linear and norm-preserving; in short, unitary:

|ψ)0 −→ |ψ)t = U(t)|ψ)0 : U+(t)U(t) = I

Writing ∂ ≡ d
dt , and U for U(t), |ψ) for |ψ)t when no confusion can result, we

have
∂|ψ)t = (∂U)U+|ψ)t (41.1)

From ∂(U U+) = (∂U)U+ + U(∂U+) = (∂U)U+ + [(∂U)U+]+ = ∂ I = 0 we
see that (∂U)U+ is antiself-adjoint (the negative of its adjoint). Therefore

i(∂U)U+ ≡ K(t) is self-adjoint (41.2)

and (41.1) assumes the form

i∂|ψ) = K(t)|ψ) equivalently i∂(ψ | = −(ψ |K(t) (41.3)

Observables are represented by self-adjoint operators A , the construction of
which typically isn’t—but in the general case might be—time-dependent.
Fundamental to the theory is the assumption that observables reveal themselves
only via their statistical properties, principally their expectation values

〈A〉ψ ≡ (ψ|A |ψ) (41.4)
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To describe differentially the kinematic motion of expectation values, we have

∂〈A〉ψ = i(ψ|K A |ψ) − i(ψ|A K |ψ) + (ψ|∂A |ψ)
= (ψ|i[K , A ]|ψ) + (ψ|∂A |ψ) (41.5)
= (ψ|i[K , A ]|ψ) for time-independent observables

where [K , A ] denotes the commutator K A − A K . The integrated motion is
described (her again U ≡ U(t) and we assume ∂A = 0)

〈A〉ψ(t) = (ψ0|U+ A U |ψ0) (41.6)

which in the schrödinger picture we attribute to

|ψ)0 −→ |ψ)t = U |ψ)0
A0 −→ A t = A0

(41.71)

and in the heisenberg picture to

|ψ)0 −→ |ψ)t = |ψ)0
A0 −→ A t = U+ A0 U

(41.72)

In the former the burden of motion is born entirely by the state, in the latter
entirely by the observable. There exist, however, an infinitude of intermediate
pictures in which the burden is shared. Writing

〈A〉ψ(t) = (ψ0|U+ W · W+ A W · W+ U |ψ0)

where W(t) is an arbitrarily time-dependent unitary operator, we have

|ψ)0 −→ |ψ)t = W+ U |ψ)0
A0 −→ A t = W+ A0 W

(41.73)

Quantum dynamics emerges from quantum kinematics when we associate
K(t) with the Hamiltonian H—usually (as below) taken to be time-independent
—of the mechanical system in question.13 In that notation (41.2) reads

i∂U = (1/!)H U =⇒ U(t) = e−(i/!)H t (42)

and the Schrödinger equation (41.3) becomes

i!∂|ψ) = H |ψ) (43)

Equivalently—and advantageously, since the initial condition is now explicit—

|ψ)t = e−(i/!)H t|ψ)0 (44)

= |ψ)0 − (i/!)
∫ t

0
H |ψ)τdτ (45)

13 For dimensional reasons the association actually reads K ←→ 1
! H .
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Equation (41.5) has become

∂〈H〉ψ = (ψ|i [H , H ]|ψ) = 0 : all |ψ)

which announces energy conservation. We note in passing that

e−(i/!)H t = lim
N→∞

N∑

n=0

1
n!

[
− (i/!)Ht

]n

is unitary only in the limit .

Suppose the (time-independent)Hamiltonian to have the perturbed structure
H + λV with [H , V ] )= 0 . Here we encounter an instance of

eA+B = I + (A + B)
+ 1

2! (A A + A B + B A + B B)
+ 1

3! (A A A + A A B + A B A + B A A

+ B B A + B A B + A B B + B B B) + · · ·

which is clearly unworkable. Campbell-Baker-Hausdorff theory14 supplies this
unpublished result due to Hans Zassenhaus:

eA+B = eA eB eC2 eC3 · · ·

where

C2 = − 1
2 [A , B ]

C3 = 1
6 [A , [A , B ]] + 1

3 [B , [A , B ]]
...

Cn = recursively defined linear combination of nested commutators

This can be very useful when nested commutators of low order vanish (as do
[x , [x , p ]] and [p , [x , p ]]), but is again usually of little use. A more effective
way to deal with this problem is to work in the interaction picture, which
was devised by Dirac in 1926 and is the special instnce of (41.73) that results
from setting W = exp{−(i/!)H t}. Then observables move as they would in
the Heisenberg picture under the V -independent action of H ; only the motion
of states is V -dependent (and would cease in the case V = 0): working from

|ψ)0 −→ |Ψ)t = e(i/!)H te−(i/!)(H+λV )t|ψ)0 (46)

where the |Ψ)-notation reflects the fact that |ψ)t and |Ψ)t have evolved by

14 For a survey, see NEW Chapter 0, pages 30–34 of my Quantum Notes
(2000).
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distinct unitary transformations from the same initial state |ψ)0 = |Ψ)0, we
have

i!∂|Ψ)t = e(i/!)H t{−H + (H + λV}e−(i/!)(H+V )t|Ψ)0
= λe(i/!)H t V I e−(i/!)(H+V )t|Ψ)0

I = e−(i/!)H t · e(i/!)H t

= λ V(t)|Ψ)t (47.1)

with
V(t) = e(i/!)H t Ve−(i/!)H t (47.2)

According to (47.1), |Ψ)t moves as it would in the Schrödinger picture under
action of the small time-dependent Hamiltonian λV(t).

Equations (47) present two challenging problems: (i) effective construction
of V(t) and—once such a construction is in hand—(ii) solution of (47.1). A
formal (meaning if we set aside convergence considerations) solution of (47.1)
springs from the observation that when formulated as an integral equation

|Ψ)t = |Ψ)0 + ω

∫ t

0
V(t1)|Ψ)t1dt1 : ω = λ/i! (48)

it invites solution by iteration:

|Ψ)t = |Ψ)0 + ω

∫ t

0
V(t1)|Ψ)0dt1

+ ω2

∫ t

0

∫ t1

0
V(t1)V(t2)|Ψ)0dt1dt2

+ ω3

∫ t

0

∫ t1

0

∫ t2

0
V(t1)V(t2)V(t3)|Ψ)0dt1dt2dt3 + · · ·

In the last integral we have t ! t1 ! t2 ! t3. Noting that t ! {t1, t2, t3} ! 0
can stand in 3! such relationships, and writing

P[A(t1)B(t2)] =
{

A(t1)B(t2) if t1 > t2
B(t2)A(t1) if t1 < t2

to illustrate the action of the “chronological ordering operator” P, we can write

|Ψ)t =

{
I + 1

1!ω

∫ t

0
P[V(t1)] dt1

+ 1
2!ω

2

∫ t

0

∫ t

0
P[V(t1)V(t2)] dt1dt2

+ 1
3!ω

3

∫ t

0

∫ t

0

∫ t

0
P[V(t1)V(t2)V(t3)] dt1dt2dt3 + · · ·

}
|Ψ)0

(49.1)
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of which “Dyson’s formula”

|Ψ)t = P
[
e
ω
∫ t

0
V (τ)dτ ]

|Ψ)0 (49.2)

provides an elegant abbreviation.15

tentative contact with bell

Let Dyson’s (49.1) be written

|Ψ)t =
{

I + 1
1!ω a1 + 1

2!ω
2 a2 + 1

3!ω
3 a3 + · · ·

}
|Ψ)0

= { I + T(t)}|Ψ)0

where the a-notation is intended to emphasize that the objects in question are
operator-valued and { I + T(t)} is a t-dependent unitary operator. With (20)
in mind we are tempted to write

T = exp
{ ∞∑

k=1

1
k! ak ωk

}
=

∞∑

n=0

1
n!Bn(a1, a2, . . . , an) ωn (50.1)

To what practical purpose I do not know. . . except to say that in this analog

Bn(a1, a2, . . . an) =
n∑

k=1

Bn,k(a1, a2, . . . an−k+1) (50.2)

of (30) I smell classification of the Feynman diagrams of any given order. But
the faciful equations (50) are nonsense as they stand: Bell polynomials spring

15 historical note: Finite-dimensional linear systems ẋxx(t) = V(t)xxx(t) have
been studied for centuries (Joseph Lagrange(1736–1813), Józef Wronski (1776–
1853)) and occur in a great many pure/applied contexts. In one dimension

d
dtx(t) = V (t)x(t) =⇒ x(t) = e

∫ t

0
V (τ)dτ

x(0)

“Dyson’s formula” acquired it’s name from the prominent role it plays in his
seminal “The radiation theories of Tomonga, Schwinger and Feynman,” Phys.
Rev. 75, 486–502 (1949), reproduced in Selected Papers of Freeman Dyson,
with Commentary (1996). The relevant commentary appears on pages 10–14.
Working within the context provided by QED, Dyson shows (§V) how to extract
from (49.2) Schwinger’s “Green Functions” and Feynman’s “Propagators,”
which latter can be formulated as “sums over paths.” In his §VII he recovers
Feynman’s graphical representation of matrix elements (Feynman diagrams,
but draws none of them). For carefully detailed discussion of (mainly) other
approches to time-dependent quantum perturbation theory, see Chapter 11 in
Griffiths & Schroeter.11
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(via integer/set partitions) from the theory of multinomial coefficients, and in
that the presumption is that all variables commute. Look again to the discussion
of

B8,5(a1, a2, a3, a4) = 70a4
1a4 + 560a3

1a2a3 + 420a2
1a

3
2 (40)

that was presented on pages 22/23. To assign meaning to B8,5(a1, a2, a3, a4)
in cases where the a-variables fail to commute we might expect to

replace a4
1a4 with the sum of the

5 permuted products of {a1, a1, a1, a1, a4}
replace a3

1a2a3 with the sum of the
20 permuted products of {a1, a1, a1, a2, a3}

replace a2
1a

3
2 with the sum of the

20 permuted products of {a1, a1, a2, a2, a2}

which would at the very least require sharp notational innovation. Whether a
workable theory of “Bell polynomials with non-commutative arguments” can be
devised, I do not know (seems likely). Whether such a tool would have useful
quantum-theotetic applications I also do not know, but am reminded once again
that it was from a quantum field-theoreic discussion4 that I first became aware
of Bell’s invention.


